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LETTER TO THE EDITOR 

Monte Carlo study of invasion percolation clusters in two 
and three dimensions 

David Wilkinson and Mary Barsony 
Schlumberger-Doll Research, PO Box 307, Ridgefield, CT 06877, USA 

Received 15 November 1983 

Abstract. We consider the process of growing invasion percolation clusters from a point 
into an infinite medium. Invasion percolation is a modified form of percolation in which 
cluster growth proceeds dynamically along a path of least resistance. The form considered 
here is the simplest one in which the cluster is permitted to grow into regions it has 
previously surrounded. It is shown that this process can yield extremely good Monte Carlo 
estimates of the percolation threshold p,. For the square, triangular and match-square 
lattices we obtain pc values of 0.5925 f 0.0003, 0.5000 * 0.0003 and 0.4072 f 0.0002, and 
for the simple cubic lattice 0.31158*0.00006. The errors quoted are purely statistical, 
and represent one standard deviation. Two critical exponents are obtained which we 
suggest should be identified in terms of the fractal dimension D and gap exponent A of 
ordinary percolation. Based on these identifications we obtain values for 1 / D  and l / A  of 
0.527 * 0.002 and 0.393 10.004 in two dimensions and 0.402 *0.003 and 0.454 f 0.005 
in three dimensions. These results are consistent with known exact results and best series 
and Monte Carlo estimates, suggesting that the form of invasion percolation considered 
here is probably in the same universality class as ordinary percolation. 

Invasion percolation is a dynamic growth process which was originally developed to 
describe the displacement of one fluid by another from a porous medium in the presence 
of capillary (surface tension) forces (Chandler er a1 1982, Wilkinson and Willemsen 
1983, Koplik et a1 1983). In this model the displacing fluid advances in a sequence 
of discrete jumps whose locations are chosen by a criterion of least capillary resistance 
(or greatest capillary drive). In the fluid problem there is a trapping rule which prevents 
the displacing fluid from invading a region it has previously surrounded, this represent- 
ing physically the incompressibility of the displaced phase. 

Here we will consider a simpler form of invasion percolation in which the growing 
cluster is permitted to enter such trapped regions, as would be appropriate if the 
displaced fluid were compressible. The process of growing a cluster from a point into 
an infinite lattice is defined by the following rules. 

(1) Consider an infinite lattice of sites and connecting bonds in which each site is 
assigned a random number r, drawn from a uniform distribution on the unit interval 
O s r < l .  

( 2 )  Choose a site (the ‘origin’) to be occupied as the seed of the cluster. At any 
stage, define the boundary to be those unoccupied sites which are nearest neighbours 
of sites in the cluster. 

(3) At each time step increase the number of sites in the cluster by one, by occupying 
that boundary site which has the smallest random number. 
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Cluster growth according to rules (1)-(3) has recently been solved exactly for the case 
of a Cayley tree of arbitrary coordination number (Nickel and Wilkinson 1983). 

The analogous algorithm for growing a single cluster in ordinary percolation at 
occupation probability p is to take rules 1 and 2 above but replace rule 3 by (Leath 
1976a, b, Leath and Reich 1978, Alexandrowicz 1980) 

(3') At each time step the current boundary sites are examined and those with 
random number r < p are accepted into the cluster. The cluster terminates when no 
sites with random number < p  remain on the boundary. 

As is well known there is a critical percolation probability pc such that for p < pc 
the cluster always terminates, but for p > pc there is a finite probability that the cluster 
grows indefinitely. By contrast in invasion percolation there is no temperature-like 
variable analogous to the occupation probability, but rather the control parameter is 
the size n of the cluster. Thus in invasion percolation the cluster may be grown to 
any desired size. 

The close connection between the two forms of percolation is demonstrated by the 
following fundamental property of invasion percolation. Let us define the 'acceptance 
profile' a , ( r )  such that a , ( r )  dr  is the probability that the random number chosen at 
the nth step is in the interval [ r ,  r+dr].  Then as n+03 it is found that the profile 
approaches a step function of the form 

Although from the point of view of this paper this property is merely a conjecture 
strongly supported by Monte Carlo evidence, we have been informed by C Newman 
(private communication) that this is in fact a rigorous theorem. 

The fundamental result (1) indicates that the invasion percolation algorithm can 
be used to obtain a Monte Carlo estimate of pc.  In computer simulations it is more 
convenient to employ a cumulative acceptance profile b, (r )  defined by 

(no of random numbers in [ r ,  r +dr] accepted into cluster), 
(no of random numbers in [ r, r + dr] considered),, 7 ( 2 )  b,(r) = 

where ( ), denotes an ensemble average over clusters of size n. In terms of a, (r )  we 
have 

where (nb), is the expected number of sites on the boundary immediately before the 
nth site is chosen. It is clear from its definition that b, (r )  is normalised such that b,(O) 
is unity. Thus as n + a, b,( r )  has the asymptotic behaviour 

In order to use (4) to estimate pc it is necessary to make some assumption about the 
way the limiting form (4) is approached as n + 00. Following Wilkinson and Willemsen 
we define B l ( n )  and B,(n) by 

1 

= s,:[1- b,(r)l dr, B ~ Q )  = I b, (r )  dr, ( 5 2 ,  b )  
PE 



Letter to the Editor L131 

which represent the deviation of b,(r) from the step function (4). We assume that as 
n + 00 these have the power law behaviour 

Bl(n) - bln-l'A, B2( n )  - b2n-1'A, (6a, b )  

with a common exponent A. This is consistent with the exact results on the Cayley 
tree, for which A is found to be 2. Our conjecture, supported by the Monte Carlo 
results of this paper, is that in general A should be identified with the gap exponent 
P + y of ordinary percolation. Our precise algorithm for determining pc and A is to 
compute, for a set of r-values close to the percolation threshold pc,  the quantity 

B,(r)  = J b,(r') dr', 
0 

(7) 

which is just ( n  +( nb), - l)-' times the expected number of chosen random numbers 
in the interval 0 s  r'c r. For a given guess for pc the quantity B,(pc) is found by 
interpolation and the corresponding Bl( n )  and B2( n )  computed from 

Bl(n) = p c - B , ( p J ,  B z ( n )  = P - B , ( P c ) ,  @a, 6 )  

p = B,( 1) = n / (  + (nb), - 1). (9) 

where p is given by 

The value of pc is then adjusted until a least squares fit of In B,( n )  and In B2( n) against 
In n yields a common slope - l / A .  

In addition to the exponent A we may also obtain a fractal dimension associated 
with the geometrical shape of the cluster. Let us define the root mean square cluster 
radius as 

where R, is the Euclidean distance of the mth chosen site from the origin, and the 
average is taken over all clusters of size n. Then we expect that for large n 

where D is the fractal dimension of the cluster. This is consistent with the results on 
the Cayley tree, for which D is found to be 4. Our conjecture, again supported by 
the Monte Carlo results of this paper, is that D is the same as the fractal dimension 
in ordinary percolation. 

We now present Monte Carlo results for cluster growth in 2~ and 3~ according to 
the invasion percolation rules (1)-( 3) given above. In 2~ we have studied the square 
(sQ), triangular (TR) and match-square (MS) lattices with coordination numbers 4, 6 
and 8 respectively, and in 3~ the simple cubic (sc) lattice with coordination number 
6. The match-square lattice is obtained by including all the diagonals on the square 
lattice; it is the so-called matching lattice to the square lattice and has the property 
(Sykes and Essam 1963, 1964) 

Pc(SQ) Pc(MS) = 1. (12) 

P,(TR) = t .  (13) 

The triangular lattice is self-matching in this sense and so 
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Since the algorithm for invasion percolation involves searching for the smallest random 
number of the current boundary sites, the computer time required to grow a cluster 
of n sites grows at least as fast as n In n, since the number of boundary sites is of order 
n. We actually use a simpler search technique which causes the computing time to 
grow as n3’*;  this method appears competitive with a logarithmic search for the cluster 
sizes considered here. Our Monte Carlo algorithm is implemented on a CDC Cyber 750 
computer and represents the coordinates of a lattice point in a single 60-bit word. 
The actual locations of the current occupied and boundary sites are stored using a 
hashing technique (see e.g. Knuth 1973). The total number of occupied and boundary 
sites n + nb is currently limited to around 100 000. Since n + cc we have 

the maximum cluster size attainable depends on the percolation threshold for the 
lattice in question. The maximum cluster size used for each of the four lattices is listed 
in the column nmax of table 1. 

Table 1. Results of Monte Carlo simulations of invasion percolation for four different 
lattices. For each lattice is shown the range of cluster sizes n used to fit the data, the 
number of realisations used, and the obtained percolation threshold pc and exponents l /A  
and l /D.  

Number 
Lattice nmln nmax grown P C  

SO 1000 60 000 1800 0.5925 k0.0003 0.395 *0.007 0.529*0.003 
TR 1000 50 000 1800 1.5000*0.0003 0.390*0.007 0.531 k0.004 
MS 1000 40 000 1800 0.4072 r0.0002 0.395 k0.005 0.521 k0.003 
sc 1000 30 000 2500 0.311 58*0.000 06 0.454*0.004 0.402k0.003 

When obtaining exponents from Monte Carlo data, it is necessary to decide the 
range of values of the independent variable, here n, to use. Naturally it makes sense 
to use the maximum cluster size nmax as the upper end of the range, but the lower 
end nmin is not so easy to decide. For fixed nmax, as nmin increases the statistical errors 
increase, but the systematic errors due to the use of finite n-values presumably decrease. 
Here we have made the choice nmin = 1000 for each of the four lattices; this choice is 
clearly arbitrary, but has the property that it limits the statistical errors in the exponents 
to around 0.005. 

In table 1 we present our results for the percolation threshold pc and exponents 
l / A  and 1/ D. The errors quoted are one standard deviation statistical errors estimated 
by dividing the data for each lattice into ten groups and observing the standard deviation 
between the ten sets of results. No attempt has been made to estimate the systematic 
errors, and so the errors quoted may be over-optimistic. Nevertheless the results in 
2~ are quite encouraging. The value pc = 4 for the TR lattice is obtained exactly, while 
for the SQ and MS lattices we obtain 

~ , ( s Q )  + P ~ ( M S )  = 0.9997*0.0005, (15) 
clearly consistent with (12), and suggesting that the pc values obtained for these lattices 
are correct within the quoted errors. Assuming (12) we may combine the results for 
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the two lattices to obtain the improved estimate 

~ , ( s Q )  = 0.5927 * 0.0002, ~ , ( M s )  = 0.4073 * 0.0002, (16) 

which is consistent with previous results for the SQ lattice of pc = 0.5923 f 0.0007 
(Djordjevic et a1 1982) and pc = 0.5927 f 0.0002 (Derrida and de Seze 1982). 

To within two standard deviations, the critical exponents obtained for the three 
2~ lattices are consistent with each other (universality), and yield the combined results 

l / A  =0.393*0.004, 1/ D = 0.527 f 0.002. (17) 

These results are also consistent with the hypothesis that these exponents should be 
identified with the corresponding ones in ordinary percolation. The den Nijs values 
(den Nijs 1979, Nienhuis et af 1980, Pearson 1980), which are thought to be exact, are 

l /A=E=O.3956, 1/ D = 3 = 0.5275. (18) 

Our results for the sc lattice are also in good agreement with best known values in 
ordinary percolation. Our value pc = 0.31 1 58 f 0.000 06 is certainly consistent with 
the value 

pc = 0.31 17 f 0.0003 (19) 

obtained by Monte Carlo methods (Heermann and Stauffer 1981), though we believe 
that in this case our error estimate is certainly too optimistic (see below). The exponents 
for the sc lattice in table 1 are also consistent with the most recent series estimates 
(Gaunt and Sykes 1983) 

(20) l / A  = 0.459 f 0.009, 1/ D = 0.403 f 0.002, 

and with the values given by Heermann and Staufer 

l / A  =0.457, 1/D = 0.402. 

As emphasised above, the percolation threshold and exponent estimates made in this 
paper have been obtained by straightforward fitting of the data; no attempt has been 
made to estimate or correct for the systematic errors which are always present when 
one tries to fit asymptotic laws with data which are obtained over a finite range of 
parameters. However, it is possible to modify the predictions somewhat by making 
more subjective judgements. For example, the method of determining pc by finding 
a common exponent in (6a)  and (6b) is equivalent to finding that value for which the 
ratio B2/B1  is ‘most constant’ over the chosen range of n-values. In figure 1 we plot 
this ratio for the sc lattice for 1000 S n S 30 000 for various values of pc. While our 
value pc = 0.31 1 58 clearly gives a reasonably constant ratio B2/B1 over the whole 
range, a human eye, seeing the trend in the data, would probably pick pc=0.3118 as 
the best value. Clearly our purely statistical error of 0.000 06 is too optimistic in this 
case. 

We have demonstrated that invasion percolation can provide an excellent algorithm 
for determining the percolation threshold pc.  While our actual method makes use of 
the unproved assumption of a common exponent in (6a)  and (6b), the close agreement 
with accepted percolation thresholds for the lattices considered clearly indicates that 
this assumption is correct. Although the algorithm for invasion percolation requires 
computer time of order at least n In n as opposed to the order n time for ordinary 
percolation, it seems likely that invasion percolation is a better pc algorithm because 
(a) the critical point is found automatically without the need for trials at different 
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Figure 1. Plot of the ratio B, (n ) /B , (n )  (see (5))  for 1000s n s  30 000 for the sc lattice 
for various choices of p,. The correct p ,  is that for which the ratio is ‘most constant’. 

values of the occupation probability p,  and (b) every cluster can be grown to a chosen 
size without risk that some clusters will grow too large to handle, as happens in ordinary 
percolation as p approaches pc.  

The good agreement between our critical exponents and those of ordinary percola- 
tion both in 2~ and 3~ strongly suggests that we have made the correct identifications 
and that the form of invasion percolation considered here is in the same universality 
class as ordinary percolation. As observed above, these hypotheses are also consistent 
with the exact results on the Cayley tree, for which A = 2 and D = 4. Given these 
identifications, the exponent values obtained here appear competitive with best previous 
Monte Carlo and series work in ordinary percolation. 

The results described here apply only to the simplified form of invasion percolation 
in which the cluster is allowed to grow into regions it has surrounded. The version in 
which this is not permitted is much more complicated to simulate because of the 
necessity of checking after each step whether a trap has taken place. Although the 
Monte Carlo work for this version is not therefore of the same quality as that presented 
here, there is considerable evidence that, at least in ZD, invasion percolation with 
trapping is in a different universality class from ordinary percolation (Chandler et a1 
1982, Wilkinson and Willemsen 1983). The underlying reason for this is not under- 
stood, and poses an interesting theoretical problem. Indeed a field theoretic formulation 
of even the simple form of invasion percolation considered here, analogous to the 
mapping of ordinary percolation onto the Potts model, is completely lacking at present. 

It is a pleasure to thank J Willemsen and B Nickel for useful discussions. 
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